
December 1 9 8 7 UILU-ENG-87-227 1
CSG-75

I
I
I
I

1
I
I
I

e

/94qLJ$7 G/Z/JQ-7-
//8/ - 4 3 - c/e:

COORDINATED SCIENCE LABORATORY
College of Engineering

DIAGNOSTIC
REASONING
IN DIGITAL
SYSTEMS

Kurt Henry Thearling

[NASA-CR-181564) D i A G N O S T I C R E A S O N I N G IN N88- 1 38 7 1

DIGITAL SYSTEMS H,S, Thesis (I l l i n o i s

I
I Univ ,) 45 p B v a i l : NTZS H C A03flF A01 CSCL 098 Unclas

G3/61 0 11 19 17

1
I

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPA41GN

-4pproved for Public Release. Distribution Unlimited.

~ ~ -
~~

UNCLASSIFIED
SECURITY ClAS$lF#ATlON OF THIS P A d

Unclassified
Za. SECURITY CLASSIFICATION AUTHORITY

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION I 1 b. RESTRICTIVE MARKINGS

None
3 . OlSTRlBUTlON / AVAILABILITY OF REPORT

4.. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-87-2271 (CSG 75)

Coordinated Science Lab Of applicable)

University of Illinois N/A

1101 W. Springfield Avenue
Urbana, IL 61801

Sa. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL

k ADORESS (G'ty, St&, and Z/PC&)

Ea. NAME OF FUNDING /SPONSORING I 8b. OFFICE SYMBOL

Approved for public release;
distribution unlimited Zb. DECLASSIFICATION I DOWNGRADING SCHEDULE

5. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

NASA

NASA Langley Research Center
Hampton, VA 23665

7b. ADDRESS (City, State, and ZPCOdc)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

k ADORESS (City, Stare, and ZIPCOdc)

See 7b.

ORGANIZATION
NASA

10. SOURCE OF FUNDING NUMBERS
PROGRAM
ELEMENT NO. NO. No.

PROJECT TASK WORK UNIT
ACCESSION NO.

NASA-NAG- 1-6 13

17. COSATI CODES
FIELD GROUP I SUB-GROUP

18. SUBJECT TERMS (COminUe on nvem if msay and identify by Mock number)
fault diagnosis, artificial intelligence, techniques,

12, PERSONAL AUTHOR($)

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
BUNCLASSIFIEDIUNLIMITED 0 SAME AS RPT. 0 OTIC USERS

!2a. NAME OF RESPONSIBLE lNOlVlOUAL

nearling, Kurt Henry

21. ABSTRACT SECURllY CLASSIFICATION
Unclassified

22b. TELEPHONE Qnctude A n a Code) 22C. OFFICE SYMBOL

13a. TYPE OF REPORT

16. SUPPLEMENTARY NOTATION

13b. TIME COVERED 14. OAT€ OF REPORT (Year 1wonth,Day)
Tec hn i ca 1 FROM TO December 1987

I I reasoning, partitioning

' 9 ABSTRACT (Continue on mvcm if nuessay and identi* by Mock number)

Described in this thesis is an efficient method for fault diagnosis in digital systems based on thc technique of

reasoning. The methodology operates on the observed erroneous behavior and the stmcture of the system. The

behavior consists of the em(s) observed on the circuit's output lines and specific values on the circuit's input

lines. The techniques described in this thesis improve upon previously published research on diagnostic reasoning

in two ways. previouS work has stressed system independent techniques which could be used to diagnose any

faulty system whose structure can be represented. By concentrating on the specific case ol diagnosing faulty digital

I

SECURITY CLASSIFICATION OF THIS PAGE

UIICLASS IFIED

83 APR edition may be used untd exhausted.
All other editions are obsolete.

I

of an AND/OR fault tree, efficiently abstracu the structure of a faulty digital system. More importantly, a method

for partitioning the digital system is introduced which can considerably reduce the runtime compkxity of a diag-

nosis.

I
s
I
1
1
1
I
1
1
1
I
I
1
1
I
I
1
I
I

DIAGNOSTIC REASONING IN DIGITAL SYSTEMS

BY

KURT HENRY THEARLING

B.S.E., University of Michigan, 1985
B.S.E.. University of Michigan, 1985

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1988

Urbana, Illinois

I
1
I

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

T H E GRADUATE COLLEGE

NOVEMBER 1987

WE HEREBY RECOMMEND THAT THE THESIS BY

KURT HENRY THEARLING

ENTITLED DIAGNOSTIC REASONING I N D I G I T A L SYSTEMS

BE ACCEPTED IN PARTIAL FULFILLMEST OF THE REQUIREMENTS FOR

THE DEGREE O F M A S T E R C E

I ‘

Committee on Final Examination?

C hairpers, ti

Head of Department

t Required for doctor’s degree but not for master’s.

0 . 5 1 7

I - _

iii

ABSTRACT

Described in this thesis is an efficient method for fault diagnosis in digital systems based on the technique of

reasoning. The methodology operates on the observed emneous behavior and the structure of the system. The

behavior consists of the emr(s) observed on the circuit’s output lines and specific values on the circuit’s input

lines. The techniques described in this thesis improve upon previously published research on diagnostic reasoning

in two ways. Previous work has stressed system independent techniques which could be used to diagnose any

faulty system whose structure can be represented. By concentrating on the specific case of diagnosing faulty digital

circuits, it is possible to simplify the representation of the structure of the system. This representation, in the form

of an AND/OR fault tree, efficiently abstracts the structure of a faulty digital system. More importantly, a method

for partitioning the digital system is intrcduced which can considerably reduce the runtime complexity of a diag-

nosis.

iv

ACKNOWLEDGEMENTS

I would like to thank Professor Ravi Iyer for his encouragement and assistance during the development of

this work. A special thanks is also owed to my friends in the Computer Systems Group. Those late night "hen

runs" were just the right thing to clear one's mind and provide a necessary distraction. In addition, I would like to

thank my family for their love and encouragement during my studies.

This work was supported by the National Aeronautics and Space Administration under contract number

NAG- 1-6 13.

V

TABLE OF CONTENTS

PAGE

1. INTRODUCTION
2. RELATED RESEARCH ..

3. OVERVIEW OF THE DIAGNOSIS METHODOLOGY ...

4. MODUS AND DEFINITIONS ..

5. DIAGNOSTIC REASONING JN CIRCUITS ...

6. PARTITIONING TO REDUCE DIAGNOSIS COMPLEXITY ...

7. DIAGNOSIS AT THE MODULE LEVEL ...

8. CONCLUSIONS ..

REFERENCES ... ~ ..

1

3

7

8

17

23

32

35

36

1

1. INTRODUCTION

In the area of reliable computation, the concept of fault diagnosis is a central issue. Once an e m is

observed, the faulty component responsible for the error must be located and replaced (either by a system techni-

cian or by automated spare nconfiguration). By examining the error and the structure of the system, possible

sources of the error can be determined. The development of a methodology which determines these possible

sources is the aim of this thesis.

In a digital circuit, there is a definite flow of signals from the inputs to the outputs. These signals (which

take on a binary set of values) flow through system components that modify the signal values according to a func-

tional specification. When one of the components is faulty, the value that a particular signal takes on can become

erroneous. One approach to fault diagnosis is to determine the relationship between the components and the way

they can, if faulty, affect the signal values.

Presented in this thesis is an approach to fault diagnosis based on the concept of reasoning. Reasoning can

be used to produce a methodology which is both natural and efficient. The structures used to describe the relation-

ship between the digital system components and the signal values within the system can be easily represented with

6rst-order predicate calculus and clause-form theorems. The reasoning required to determine possible sources of

any observed errors can be performed on these structures using simple logical transformations. The process of

diagnosing a digital system takes information about the erroneous activity of the system, the inputs applied to the

system, and the structure of the system and generates a set of suspect components. A suspect is any system com-

ponent which could have produced (under fault) the observed error activity, given the known inputs to the system.

All components which could have produced the error activity are included in the suspect set. This guarantees that

the actual faulty component will be included in the suspect set. The assumption is made that there is only a single

faulty component present in the system.

The contributions of this thesis are in two areas. First, unlike other methods, an explicit AND/OR fault tree

representation is used to represent the circuit structure. This representation reduces the search complexity for the

digital circuit diagnosis while keeping a structure isomorphic to the circuit. The fault tree is traversed for the pur-

2

pose of a diagnosis and is transformed into logical representations of the signal flows which are referred to as

theorems. The theorems are then used to determine the faulty component responsible for obscrved error(s).

Another important contribution of this thesis is the introduction of a partitioning technique which reduces

the overall complexity of a diagnosis. A major disadvantage of past approaches involving diagnostic reasoning in

digital sysrems is in the complexity of the diagnosis once an error is observed. A new technique to m u o n the

circuit such that each partition has its own AND/OR fault tree and theorem representation is introduced. Each par-

tition is diagnosed separately and only those partitions whose components could have produced the error are

examined. By preprocessing each partition during the design phase of the circuit, it is shown that the complexity

of the runtime diagnosis can be reduced. Since the time between the observance of an error and the determination

of the sources is critical, much of the diagnostic process can be done in advance.

1
I
1
I
I
1
I
I
1
I
I
1
I
I
1
I
1
I
I

3

2. RELATED RESEARCH

Previous work in the area of digital system diagnosis has come from both AI and non-AI based approaches.

Most of the non-AI dated work in this area has used the PMC (Reparata, Me=, and Chien) model for digital

system diagnosis [l]. This model is aimed at multiple processor systems with a directed graph used to describe the

connections between processors. An assumption is made which limits the number of faulty processors to T pro-

cessofs. A system being diagnosed under such an assumption is referred to as a T-fault diagnosable system. The

basic concepts of diagnosing systems described by this model are as follows. The system is first partitioned into

separate processors, with each processor testing some subset of the other pmcessors. The results of the tests can

take on two possible values: the processor under test is faulty or it is fault-&. These test results are assumed to

be correct. The results of all the tests are referred to as a syndrome. By looking at the graphical representation of

the system (in the form of a connection matrix) and the syndrome, a diagnosis is performed In [l]. various

bounds on the number of processors required to perform a T-fault diagnosis are developed. An efficient polyno-

mial time algorithm to perform a diagnosis based on this model has been developed by Dahbura and Masson (21.

The PMC model is not readily applicable to diagnosing the circuits of the type considered here. The PMC

model is at the system level while we are considering the gatelmodule level; our model is essentially one level

lower than the PMC model in the design hierarchy of a digital system.

In the area of artificial intelligence, the diagnosis of a faulty digital circuit falls within the area of reasoning

about physical systems [3-51. There are two approaches to solving this problem. Both can be applied to the diag-

nosis of digital systems. The first approach is to use what is commonly known as a "rule-based" expert system.

Instead of developing general reasoning methodologies suitable for the diagnosis of any digital system, rule-based

systems are dnven by a set of devicc specific rules developed specifically for a particular system. The rules are

generated by human or computer "experts" knowledgeable about the system behavior. The rules are b d on

knowledge of the operation of the system, previous failure data, and possibly a causal analysis of the system simi-

lar to the reasoning approach (which is described later). By generating a sufficient number of these rules, it it pos-

sible to describe the behavior of a system. There have been a large number of diagnostic expert systems

4

developed using this approach [6-161. These diagnosis rules are typically of the form If< X is true > Then c add

Y to the suspect list >. An example, from [9]. is

IF (1) the instrument is outputting zero or low voltage, AND

(2) the condition of component F1 is not nominal

THEN the fuse is definitely faulty

This rule would "fire" if conditions (1) and (2) were found to be true. If this were to happen, the component

listed in the "then" statement would be added to the set of suspect components.

As would be expected, a rule-based system requires a large number of rules to adequately cover the most

common faults. As an example, the diagnosis system in E91 has 356 different rules. But even with a large number

of these rules, it is virtually impossible to guarantee that all faults can be diagnosed comtly. In addition, the

generation of these rules can be a very time consuming process. Whenever there is a change to the structure of

the system, the rules must be modified accordingly by human experts knowledgeable about the operation of the

system.

The second artificial intelligence approach to diagnosis is to apply reasoning techniques to obtain an under-

standing of the behavior of a system. By applying the knowledge of simple component behavior, the behavior of

an entire system composed of these components can be determined. In contrast to the rule-based diagnosis sys-

tems, diagnostic reasoning attempts to take simple component behavior and understand the behavior of an entire

system. This allows flexibility, in that the system can diagnose any circuit composed of components which it

"understands." The major contributions to this area have been made by Davis [17-211 and Genesereth E22.231.

Davis's work has stressed the development of a representation suitable for the description of the system

structure and component behavior. Once a suitable representation has been obtained, a technique known as con-

straint suspension [20] is used to perform a diagnosis. The procedure starts with predicting (through simulation)

the output value given the input values and certain constraints which describe the behavior of the system com-

ponents. When the predicted value is different from an observed value (which is obtained by applying input

I
1
1
I
I
I
I
1
I
I
1
1
I
I
I
1
I
1
1

5

values to the actual circuit and monitoring the output value), the system is faulty and a diagnosis is carzied out. To

first determine the possible sources of the e m , rhe components between the erroneous output and an input are

listed as "candidates." For each one of the candidates, a simulation is performed. This simulation is different from

the initial simulation in that the constraints that describe the behavior of a component are suspended. The diag-

nosis procedure modifies the behavior of each of the candidates (in separate simulations) and checks to see if this

modified behavior could have produced the observed enor. If a modified component is capable of producing the

observed error, it is added to the list of suspects. This procedure is repeated for every observed e m .

The method most closely related to the work described in this thesis has been developed by Genesereth. In

his diagnosis methodology, a set of behavioral descriptions is developed to describe the behavior of system com-

ponents. The structure of the system is represented in the fonn of connections between instances of these com-

ponents. A backward searching procedure (depth first search) is used D search the structure of the system using

behavioral descriptions of the components. The search begins at the output which was observed to produce an

error. At each node (component) in the search, the list of behavioral descriptions is searched m find those whose

behavior is consistent with the observed error. When the search reaches a system input, the input is compared

with the value expected to be on that line (given the error value on the output). If the values are different, the

components on the path from that input to the output are added to the list of potential sources of the error. A prun-

ing of the diagnostic search space is done at runtime by removing portions of the search space unreachable due to

known input values. This allows an improved avenge case time complexity but does not improve the worst case

time complexity. The worst case occurs when the application of input values (while traversing the search space)

does not prune any of the search space (i.e., all inputs are at the edge of the search space). This process of search-

ing the structure is repeated €or every error that is observed. As the process is repeated for additional errors, it is

possible to reduce the number of suspect components.

There are a number of areas within the previous research that need to be improved upon. These areas are

addressed in the subsequent sections of this thesis. First, the relationship between the structure of the system and

the flow of enors through the structure is not explicitly described. This relationship is the essence of a diagnosis

6

in a digital system. By embodying this concept in the diagnosis data s t ~ c m , it is possible to reduce the com-

plexity of the diagnosis while simplifying its representation. Another problem with the previous work is the lack

of techniques to deal with the complexity of the runtime diagnosis. A solution to alleviate these problems can

greatly aid in the the implementation of diagnostic reasoning techniques for real world applications.

I
I
I
1
I
I
I
1
I
I
I
1
I
I
I
1
I
I
I

7

3. OVERVIEW OF THE DIAGNOSIS METHODOLOGY

For a diagnosis to take place, certain information must be available. This information includes the observed

error, the inputs responsible for the generation of the error, and the structure of the system being diagnosed.

Once this information is available, a diagnosis can be performed.

The proposed diagnosis procedure is broken up into two steps. In the first step, the structure of the system

is traversed to produce theorems that represent information about the possible sources of errors in the system. This

step is done in the form of preprocessing to reduce the time required to perfonn the diagnosis once an error is

observed. The structure of the circuit is assumed to be in the form of a netlist or a similar representation. This

structure is abstracted to create an AND/OR fault tree, which dif€ers somewhat from the well-known fault trec

representation [24] in that it is slightly simpler. The simplification is due to the well-defined faulty and nonfaulty

behavior of the digital system components. For each of the errors that can be observed on the circuit outputs, an

AND/OR fault tree for the circuit is derived. To reduce the complexity of the diagnostic process, the circuit is first

partitioned before it is traversed. Instead of traversing the entire circuit, each partition is traversed separately. By

appropriately choosing the partitions, a considerable reduction in the runtime complexity of the diagnosis can be

achieved.

When the circuit is in operation and an error is observed, information about the error and inputs are applied

to the theorems generated above to determine the suspect component(s). The suspect set can be further refined if

additional emrs are observed for the same fault with different input values. Note that the first step (generating the

theorems) is only performed once and is not repeated for additional diagnoses. This step needs to be done only

once. Assuming that there is only a single fault, the suspect component must exist in the suspect sets for all diag-

noses. Thus, an intersection of the suspect sets allows a refinement of the diagnosis.

8

4. MODELS AND DEFINITIONS

The systems of interest are assumed to be combinational circuits. They are composed of modules which can

be as simple as a gate (OR, AND, etc.) or more complex (such as adders, multiplexors, etc.). The fault model

under consideration is the single module fault. This model is considerably more comprehensive than the classical

stuck-at model. A fault is defined to be any number of changes in the truth table representation of a module's

behavior which does not cause the module to exhibit sequential behavior. The emrs observed at the outputs of

the system are referred to as D (expected value is one, observed value is zero) and Dbar (expected value is zero.

observed value is one).

4.1 AND/OR Fault Trees

The relationship between the structure of a digital circuit (as described above) and the flow of errors through

the circuit is easily represented by what we refer to as an AND/OR fault tree. This tree is made up of AND and

OR nodest and is derived from the circuit description and fault assumptions. Note that the AND and OR nodes as

defined are quite distinct from the AND and OR gaes in the circuit. Figure 1.a depicts an "OR" node. The "OR"

node is indicated by the absence of an arc between the outputs of the node. In this figure, if Error1 is observed at

the output of component C1, it is either the case that C1 is faulty or the first input equals Value1 OR the second

input equals Value2. The variables Value1 and Value2 take on the values 0 or 1, depending on the tw of e m

observed. In Figure 1.b. an "AND" node is depicted. The "AND" node is indicated by an arc between the outputs

of the node. In this figure, if Error2 is observed at the output of component C2, it is either the case that C2 is

faulty or the first input equals Value3 AND the second input equals Valud. Note that C1 and C2 can be any of

the circuit Components (e.g., gates or modules). Also, notice that the mows for the AND/OR fault tree nodes

point in the direction opposite to the signal flow direction for the components that the nodes represent. This is to

represent the direction of the diagnosis.

Consider the example of an erroneous output from a two input OR gate. If the error observed was a D, it is

obvious that either the OR gate was faulty or that both inputs to the gate were zero. Since a one was expected on

There is also a NOT node type. Its meaning wdl become clear in the examples presented later.

I
1
I
1
1
I
1
I
I
I
I
1
I
I
I
I
I
I
I

9

Error1 h 2

A A
vlluc 1 Vlluet Value3 value4

OR Node AND Node

(4 (3)

Figure 1: AND/OR Tree Structures

the output, the inputs must have been such that at least one input was a one. The logical representation of this

statement is: "the OR gate was faulty" or "input1 = 0" and "input2 = 0." If the OR gate is not faulty, each input

which should have value one must actually have value zero. Since the output is a D, there must be at least one

input whose value should been one. By considering the possibility of the error propagating through the OR gate,

we can now backtrack through the circuit starting with the components that feed the inputs to the OR gate. This

relationship between the OR gate and the propagation of a D error through the gate is represented in the AND/OR

fault tree structure illustrated in Figure 2. The OR gate in the figure is "named" 01 and has inputs A and B.

D Dbar

A = O B = O A = t B = t

Figure 2: AND/OR Fault Tree for a Faulty OR Gate

I

10

If the emor was a Dbar on the output of an OR gate, it is obvious that either the OR gate was faulty or that

at least one of the inputs to the gate was a one. Since a zero was expected on the output, the inputs should have

been such that both were zero. The logical representation of this statement is "the OR gate was faulty" or "input1

= 1" or "input2 = 1." If the OR gate is not faulty, there must exist an input which should have value one but =tu-

ally has value zero. Since the output is a Dbar, each input should have value zero. Once again, we consider the

possibility that the Dbar error propagated through the OR gate by backtracking through the circuit starting with the

components which feed the inputs to the OR gate.

Similar techniques are used to represent the flow of e m through other gates. The fault tree structures for

other components can be easily obtained by considering the relationship between an error on the output and the

the inputs. Figure 3 illustrates the fault tree structures for AND, INVERTER, NOR, and NAND gates. Notice

D Dbar D h r

A A
A = O B = O A = l B = l

AND gate AI

D Dbar

A A
4 P
A = l A = O

Inverter I1

Dbar D

A
A = l B = l A = O B = O A = O B = O A = l B = l

NOR gate N1 N&\D gate N2

Figure 3: AND/OR Fault Trees for AND, NOT, NAND, and NOR Gates

I
I
I
1
I
1
I
i
1
I
1
1
I
I
I
1
I
1
1

11

that the node type for the AND gate is a dual of the node type for the OR gate. Also, the errors for the

INVERTER, NOR, and NAND gates are inverted as they pass through the node. This is to be expected, since the

outputs from the gates are inverted.

By cascading the approPriate strucfures for interconnected components, the fault tne for an entire digital

system can be obtained. When cascading the tree struc~res, it is important that the correct structure (either D or

Dbar) for a component be used. When an input with the value "input = 0" is to be propagated to another com-

ponenf a D error component structure is used to feed the input Similarly. when an input with the value "input =

1" is to be propagated to another component, a Dbar m r component saucc~re is used to feed the input.

As an example of this process, the complete D ermr AND/OR fault tree for the circuit in Figure 4 will be

constructed. Assume that a D error on the 2 output of OR gate 01 is being considered. The component 0 1 is

represented in the fault tree by the D error node for an OR gate. This fault tre!e stnrcture can be found in Figure 2.

The connection hm 01 to A I is represented in the 01 's tree structure by the term "input = 0." As stated above,

this means that A1 is represented in the fault tree by the D error node for an AND gate. The connection from 0 1

to A2 is also represented in 0 1 ' s vee structure by the tmn "input = 0." Thus, A2 is repsenred in the fault tree

by the D emr node for an AND gate shown in Figure 3. The connection from A I to A3 is repnsented in AI'S

tree structure by the term "input = 0." A3 is then represented in the fault tree by the D e m node for an AND

cm D I1

Figure 4: Example Circuit

12

gate. The connection from A2 to I1 is represented in A2's tree structure by the term "input = 0." Therefore, 11 is

represented by the D e m r node for an INVERTER. The connection from I1 to A3 is represented in 11's tree

structure by the term "input = 0." This requires that A3 be represented by a Dbar error structue. Since this is

different from the structure repnsenting A3 that had been created previously, another representation of A3 is

created. The difference is that the first representation for A3 was a D error structure while the second was a Dbar

error spucture. This completes the representation of all components in the circuit. The complete AND/OR fault

tree for this circuit is shown in Figure 5. Since the Dbar error tree is the dual of the D error tree, it is a simple

matter to "invert" the Dbar tree and obtain the D error mee. To invert a tree, simply change all AND nodes to OR

nodes (and vice versa) and invert the input values.

Z = D

C = l D = l

Figure 5: AND/OR Fault Tree for Example Circuit

In the next subsection, the AND/OR fault trees are used to generate clause-form theorems which are used to

perform the actual diagnosis. These theorems embody the information contained in the fault tree.

I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
II
P
I
1
I
1
I
I
1
I
I
1
I
I

4 2 Clause-Form Theorems

To make it easier to manipulate the information contained in

13

the fault trte representation, the tree is

transformed into a clause-form theorem representation. A clause-form theorem is the productsf-sums representa-

tion of logical statements. The logical statements describe the relationship between the possible sources of error

and the flow of the errors through the structure of the circuit. For the example (in Figure 2) of the OR gate with a

D error output, the logical statement to be represented in the theorem is either the gate 0 1 is faulty or input A

equals zero and input B equals zero. In the theorems, the postulate 01’ indicates OR gate 01 is faulty while the

input postulates A-0 and A=l indicate that the input A equals zero and one, respectively. The result of transform-

ing the fault tree structure for a D error on the output of OR gate 0 1 is

ThmDl (01’ A d)
ThmD2 (01’ B=O)

In the above representation, there is an implied logical “OR“ between each of the statements in a theorem

and an implied logical “AND” between each of the theorems. For the example of the OR gate with a Dbar error

output, the logical statement to be represented in the theorem is either the gate 0 1 is faulty or input A equals one

or input B equals one. The resulting Dbar theorem is

ThmDbarl (01’ A=l B-I)

It is trivial to transform the tree structures in Figures 1 and 2 into these theorem representations; for more

complex circuits composed of many gates, such a transformation is not as obvious. An algorithm to perform this

task is given in Figure 6. In the algorithm, the theorem representation is returned in the variable Theorem-Set

As an example, we now transform the fault tree representation for the circuit in Figure 4 into a clause-form

theorem representation using the algorithm. Given that a D error is observed on the output 2, the function

TRAVERSE is applied to the fault tree in Figure 5 and returns the following theorem representation:

ThmDl
ThmD2
ThmD3

(01’ A2’ 11’ A3’ B=O D=l)
(01’ A2’ 11’ A3’ B=O C=1)
(01’ Al’ A3’ A 4 C=O D=O)

14

T h c ~ r ~ m S e t I TRAVERSqOutput-Node, 0)

FUNCTION TRAVER!3UCurreat-Node, Current-Theorems)
ADD(Cumnt-Nale, Current-Theorems)
IF TYPE(Current-Node) = AND THEN

New-Theorems = 0
FOR EACH CHILD d Current-NODE

Child-Theorems = TRAVERSE(Chiid of Current-node, Current-Theorems)
add Child-Theorems to the Ut d New-Theorems

TRAVERSE = New_Thcorcms

FOR EACH CHILD d Current-NODE

TRAVERSE = C u r r e n t - T h m s
IF TYPE(Current-Node) = N O T THEN

Current-Theorems = TRAVERSE(ChI1d of Current-node, Current-"heorenu)
TRAVERSE = Currcnt-Theorems

IF TYPE(Current-Node) = OR THEN

Currmt-Thcomns = TRAVERSE(Ch1id d Current-nod& Cut'rent-Thmw)

PROCEDURE ADD(Current-Node, Current-Theorems)
IF TYPE(Current-Node) I INPW THEN

ELSE
add the Input value f a Current-Node to each theorem In CurrentTheorems

add faulty component pastulate for Current-Node to each theorem In Current-Theorems

FUNCTION TYPE(Current-Node)
IF Current-Node Is an AND node THEN

IF Current-Node Is an OR node THEN

IF Current-Node is a NOT node THEN

IF Current-Node is a input THEN

TYPE I AND

TYPE = OR

TYPE = N O T

TYPE = INPUT

Figure 6 Algorithm to Generate Theorem Representation for an AND/OR Fault Tree

Since the theorems are a sum-of-products representation, when the entire theorem representation is true it

must be the case that each individual theorem is true. It then follows that at least one of the postulates in each

individual theorem must also be true. Since each theorem contains postulates about both input values and faulty

components, the theorems that provide valuable information to the diagnostic process are those with no input

I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I

I
I

I
I
I
8
1
I
I
1
1
I
1
I
1
1
I
I

m
15

postulates. When this is the case, it must be that at least one of the postulates about a faulty component be true.

This is where the concept of resolution [25] comes into play. Resolution is a process by which statements known

to be false are removed from a set of clause-form theorems.

Suppose that a D error is observed on the Z output of the circuit in figure 4 when the inputs are A=l, B=l,

C t l , and -1. Under nonfaulty conditions, a one should appear on the output. Since a D e m is observed, the D

error theorem representation must be true. In addition each individual theorem in the representation must be true.

Take for example theorems ThmD1 and ThmD2. Since it is already known that C-1 and -1, nothing can be

inferred about the faulty component postulates. In theorem ThmD3, however. we know that the postulates AIO,

C4, and D=O are false. We can then remove them from the themm. The theorems that result from the resolu-

tion are then used to diagnose the source of the error. A theorem that contains only faulty component postulates is

referred to as an ucrivured theorern. In general, more than one theorem can be activated, but at least one must be.

If no theorem is activated, the output could not have been in error for the given inputs. Since the activated

theorems are true, one of the faulty component postulates must be true. The components common to all activated

theorems are referred to as the suspect set, which is obtained by intersecting the activated theorems. In our exam-

ple, the only activated theorem is

ThmD3 (01' Al ' A3')

As shown above, the only theorem activated is ThmD3. Its faulty component postulates are 01'. Al', A3';

therefore, the suspect set is (01, Al , A3).

If new errors are observed (given the same fault) for a different set of inputs, the resolution process can be

repeated by generating an additional set of suspects for this new set of input values. In this new diagnosis, the

generation of the theorems does not have to be performed again. Assuming that a single fault produced each of

the errors, the new set of suspects is intersected with the old set of suspects, resulting in a refined suspect set.

This suspect set is no larger than the smallest of the two sets being intersected. Thus, with additional information,

the diagnosis may be improved (or, in the worst case, stay the same).

16

For example, let the input values be changed to A=O, B-I, C=O, D=O. Once again, a D e m is observed on

the 2 output The known input values are then resolved with the D error theorems to generate the following

activated theorems:

ThmDl (01’ A2’ 11’ A3’)
ThmD2 (01’ A2’ 11’ A3’)

These theorems are intersected to generate the suspect set (01, A2.11. A3). To refine the suspect set, the result of

this diagnosis is intersected with the result of the previous diagnosis to generate the new suspect set (01, A3).

Since the components 01 and A3 are mentioned in each of the theorems, it is impossible to refine the suspect set

any further.

In the following chapters, more complex circuits are considered.

1
1
I
I
1
1
1
I
1
I
I
I
I
1
I
I
I
I
I

17

5. DIAGNOSTIC REASONING IN CIRCUlTS

A m a n complex example of the dqnosis procedure is illusnated for the circuit depicted in Figun 7. The

full fault trees for the C,,, output with D and Dbar mrs are shown in Figures 8 and 9, respectively.

s1 s2E
-=+%I x2

P s3

x1

M
Cn

Figure 7: Example Circuit

Tables 1 and 2 contain the theorems generated by traversing the D and Dbar trees for Figure 7. These

theorems were generated using the algorithm listed in Figure 6. Note that in the cases of theorems D7, D16,

Dbar8, and Dbarl2. complementary values for some of the input postulates exist in the same theorem. In the case

of theorem D7, the input postulates X2=1 and X2=0 are both present Since only one of these can be resolved

with a known input value, the theorem can never be activated. merefore, the theorems D7, D16, Dbar8 and

Dbarl2 are discarded.

Consider a D error observed when the known inputs were C n 4 M=l SO=O Sl=l S24 S3=0 Xl=l X2=1.

If these input values are resolved with the D theorems, four theorems are activated. The activated theorems are

ThmDl (A’ B’ C’ K’)
ThmD2 (A’ B’ C’ K’)
ThmD9
ThmD10 (A’ B’ C’ D’)

(A’ B’ C’ D’ K’)

CM1 = D

x2=1 x 2 = l

Figure 8: Fault Tree fur D Enw for Circuit in Figure 7

Table 1 : Theorems for D Error for Circuit in Figure 7

Theorem #
D1
D2
D3
D4
D5
D6
D7
D8
D9
D 10
D11
D 12
D13
D 14
D15
D 16

Theorem
(A’ B’ C’ K M 4)
(A’ B’ C’ K
(A’ B’ C’ E’ F‘ K
(A’ B’ C’ E’ G’ J’ K’
(A’ B’ C’ D’ H’ J’ K’

(A’ B’ C’ D’ E’ F‘ H’ J’
(A’ B’ C’ D’ E’ G’ H J’
(A’ B’ C’ D’ K’
(A’ B’ C’ D’
(A’ B’ C’ D’ E’ F‘
(A’ B’ C’ D’ E’ G’ J’
(A’ B’ C’ D’ I’ K
(A’ B’ C’ D’ I’
(A’ B’ C’ D’ E’ F‘ I’
(A’ B’ C’ D’ E’ G’ I’ J’

C-1 Ma)
M=O S 3 4 X1=0 X2=1)
M=O SZ=O Xld Xbl)
M 4 S1=0 Xbl)
Cn=l s14 x2-1)
S14 S34 X1=0 X M Xbl)
S14 SM X14 X2-1)
M 4 Xld)
C m l Xld)
s34 Xl=O X2=0)
s2=0 x14 X 2 d)
M 4 S W XbO)
Cn=l S O X24)
S W s34 x1=0 X24)
SO=O S2=0 Xld X24 X2=1)

(A’ B’ C’ D’ H’ J’

I
18 1

I
1
il
I
I
1
I
I
I
1
I
II
1
1
I
I
1

Theorem #
Dbarl
Dbar2
Dbar3
Dbar4
Dbar5
Dbar6
Dbar7
Dbar8
D b d

DbarlO
Dbarll
Dbarl2
Dbarl3

19

Theorem
(A’ B’ E’ F‘ G’ K
(A’ B’ E’ F‘ G’ K’
(A’ B’ E’ F’ G’ K
(A’ B’ E’ F‘ G’ K’
(A’ B’ E’ F‘ G’ K
(A’ B’ E’ F’ G’ K’
(A’ B’ E’ F‘ G’ J’ K’
(A’ B’ E F’ G’ J’ K
(A‘ B’ E’ F‘ G’ J’ K‘
(A’ C’ D’ H’ I’ I’ K
(A’ C’ D’ H’ I’ K’
(A’ C’ D’ H’ I’ J’ K’
(A’ C’ D’ H’ I’ K’

Cn=O M=l S2=1 S3-1)
C n 4 M=l S2=1 X2=1)
Cn=O M=l S2=1 Xl=l)
CntO M=l S3=1 Xl=l)
Cn=O M=l Xl=l X2=1)
Cn=O M=l X1=1)
CntO M=l S3=1 XZ-0)
Cn-0 M=l XZ-0 X2=1)
C n 4 M=l Xl=l X M)
M=l S b 1 Xl=l m)
M=l SO=1 S1=1 Xl=l)
M=l Xl=l X 2 4 X2=1)
M=l S l = l X l= l XZ-1)

Figure 9: Fault Tree for Dbar E m r for Circuit in Figure 7

Table 2 : Theorems for Dbar Error for Circuit in Figure 7

20

Intersecting these theorems results in the suspect set (A, B. C). Thus, one of the components A, B, or C is faulty.

There are two approaches to the refinement of the suspect set. In the first approach, a refinement is per-

formed when the next error is observed. It has been shown that the error recurrence rate due to a fault in a real

system is quite high 1261. Given this, it is highly likely that a new set of inputs which can be used to refine the

diagnosis will be available within a short period of time. For example, assume that the inputs M and X1 both

change from one to zero and a Dbar error is observed on the output of Cn+l. When these new known input values

are resolved with the Dbar theorems. only one is activated:

ThmDbarlO (A’ C’ D’ H’ I’ J’ K’)

The suspect set for this Dbar error is (A, C, D, H, I. J. K). The suspect set from the first observed error

((A, B, C)) is now intersected with the suspect set from the second observed error to produce the refined suspect

set (A, C). ‘Thus, the suspects have been reduced to two possibilities: the NOR gate A or the AND gate C.

The second approach to suspect refinement requires the generation of specific input values which can

differentiate between suspects. For example, since theorem Dbarl does not contain a faulty component postulate

for component C, a set of known inputs that activate theorem Dbarl could be applied to determine if C is the

faulty component. If with the inputs Cn=l M=O S2=0 S3-0 (all other inputs are don’t cares) a Dbar error is

observed, the new suspect set will not contain C. Thus, an intersection of the old suspect set and the new suspect

set will remove C from suspicion. The resultant suspect set will contain only A. If this input pattern does not

produce an error, the diagnosis cannot be further refined using that set of known inputs. Since a postulate about

component A is included in every theorem (for both D and Dbar errors), it is impossible to remove the output of

A from the suspect set. This would seem reasonable since the output of A is the output of the circuit being diag-

nosed. Whenever an error is observed, it is possible that the output of A produced it. This problem of determin-

ing input patterns that distinguish between faulty components reduces to the covering problem. Similar to test pat-

tern generation, this problem has been shown to be NP-complete [27. Heuristic methods, such as AQ [28], can

be used to help solve this problem.

1
1
I
I
1
I
1
I
I
1
1
I
1
1
1
I
I
I
1

21

It is noted that much of the work done in resolving and intersecting the theorems can be &ne in advance,

when the time constraints are not critical. For all known input combinations, the D and Dbar suspect sets can be

generated in the form of a table (referred to as a single step suspect table). Given an error, the table can be used

to generate the suspect set for the input combination. Thus, each diagnosis can be performed in a single step. For

example, consider the theorems for a Dbar error listed in Table 2. The theorems are transformed into the single

step suspect table listed below:

CnSOSl S2S3 XI X2

1111111
1111 110
1111101
1111100
111 101 1
1111010
1111001
1111o00
1110111
1110110
1110101
1110100
1110011
11 10010
1llOOOl
1 1 1 m
1101 1 1 1
1101110
1101 101
1101 100
110101 1
1101010
1101001
1101o00
1100111
11001 10
1100101
1100100
1 lo001 1
11oO010
1 loo001
1 1 m

-
S - -

a
a
B

a
a

a
a
a
a
a
a
a

a
Y
P

a
Y

a
a
Y
a
a
a
Y -

OlsoSl SZS3XlX2
~

1011111
1011110
101 1101
101 1100
101 101 1
101 1010
101 1001
101 lo00
1010111
1010110
1010101
1010100
101001 1
1010010
101oO01
1 0 1 m
l o o l l l l
1001 110
1001 101
1001 100
100101 1
1001010
1001001
1001o00
1ooo111
1oo0110
1oo0101
1000100
loo001 1
loo0010
l m l
1OOOOOO

-
S - -

Y
a
B

Y
a

a
Y
a
a
a
Y
a

Y
Y
P

Y
Y

a
Y
Y
a
a
Y
Y -

01 so SI s 2 s3 x 1 x2

011 11 11
01 111 10
011 1101
0111100
01 1101 1
01 11010
01 11001
01 1 lo00
01 101 11
01 101 10
0110101
01 10100
01 1001 1
0110010
01 lo001
01 loo00
0101111
0101110
0101101
0101100
010101 1
0101010
0101001
0101ooo
01001 11
Ol00110
0100101
0100100
OlOOOll
01oO010
0 1 m 1
0 1 m

-
S - -

6

6

S

6 -

CnSOS 1 S2S3 X1 X2

0011111
0011110
0011101
0011100
0011011
0011010
0011001
0011Ooo
00101 11
0010110
0010101
0010100
0010011
0010010
00lo001
001oooO
m 1 1 1 1

o001110
o001101
o001100
o001011
o0O1010
o001001
o001Ooo
m 1 1 1
m 1 1 0
m 1 0 1
~ 1 0 0
a m 0 1 1
m 1 0
OOOOOO1
0000000

I

S

E

E

E

E

E

6

E

S

E

6

E

6 -

22

The five suspect classes are as follows: a = (A,BBP,G,K), p = (A$B.F,GJ,K), y = (AX), 6 =

~A,C,D,H,I,KK), and E = (A,C,D,HJJ,K}. Notice that the input M was not included in the table. Since it is

necessary that M be zero for every Dbar error, to including M in the table will not differentiate between any of the

suspects. If the input values hash onto an empty suspect class (indicated in the table by a "-"), the known input

values could not have produced a Dbar error on the C,, output In the best case, the size of the table will be

equal the number of different suspect classes generated by applying the input values which can produce an emr.

In the worst case, the table will have 2" entries, when n is the number of inputs to the circuit being diagnosed.

Techniques such as Quine-McCluskey minimization can be used to reduce the size of the table. Let us return to

the example diagnosis done earlier. For the inputs C n 4 M=O SO=O Sl= l S k O S3=0 X14 %l, a Dbar e m

was observed. Using these inputs as a table address, the suspect class E is obtained. As expected, the suspect set

for this set of input values is (A,C,D,H,IJ.K}.

The question arises: How applicable is this method to large circuits? The algorithm in Figure 6 to generate

the theorem representation can be easily automated. The generation of a single step suspect table can also be

automated. Thus, automating the diagnosis methodology to handle large circuits is a realistic goal. An important

problem that still remains is an exponential growth in the search complexity (Le., the size of the table) as the cir-

cuit size increases. A solution to this problem is discussed in the following chapter.

1
I
I
1
1
i
1
I
I
I
I
I
1
I
I
I
1
I
1

23

6. PARTITIONING TO REDUCE DIAGNOSIS COMPLEXITY

The worst case complexity of performing a diagnosis (in terms of the number of theorems) can grow

exponentially with the size of the circuit. For large circuits, this growth is unacceptable. To reduce the complex-

ity, now introduced is a method of partitioning the circuit under diagnosis which considerably reduces the number

of theorems that need to be generated. This is due to the fact that each partition is diagnosed separately, and as a

result the number of theorems, although still exponential in the number of inputs to each partition. grows linearly

with the number of partitions. When a runtime diagnosis is performed, the partitions which provide no informa-

tion to the diagnosis are pruned from the search space. The algorithm to diagnose the partitioned circuit is as fol-

lows:

Step 1: Generate the theorems for each prtltlon. On observing an m, start at the parti-
tion where the error is observed.

Step 2 For the current partition, rrsolve the known input values with the appmprlate set d
error theorems,

Step 3: If any of the theoroms u e fullyt a d h t e d , intersect these theorans and return the
result.

Step 4: If there arc no fully activated theorems, collect the pnrtIdIyfl activated theorems. In
this case, it is still posible to activate some d the partially activated theorems, but they need
to consider the partitions whlch output the unresolved inputs. For each unresolved input
which is connected to the output of another partltlon, recursively apply Steps 2 - 4 on the
appropriate partition output. An unresolved Input postulate is replaced by the faulty com-
ponent postulates returned by the recursive appllertlon ol Steps 2 - 4. After a11 partially
actlvnted theorems are processed, intersect the partidly activated theorems and return the
result.

As an example of this process, consider the N-bit carry-ripple adder in Figure 10. It is partitioned into N

partitions, where each partition is a full adder (Fh - FA,,). The problem is to determine which full adder is

~ ~

A fully acuvated theorem is me m wtuch there are only faulty component postulates.
tt A pamally acuvated theorem is m e m wtuch the only unresolved m p t posiulatu are those connected to outpuu of other pamums.

24

faulty and within the full adder, which gate is faulty. The circuit representing the internal structure of each of the

full adders is illustrated in Figure 11. Figures 12 - 15 show the AND/OR fault trees for D and Dbar errors on the

sum and carry outputs of a full adder module. Tables 4 - 7 List the theorems generated from the fault tree sauc-

tures.

We will now diagnose a 4-bit carry-ripple adder (Le., N equals 4) using partitioning. The components are

labeled FA$ where FA, is full adder i and K identifies the specific component within FA,. For example. FA.,:Ol

identifies the OR gate 01 within full adder 3. Assume that the initial carry input C, and all inputs Ai and Bi an

set to zero. This should produce a zero on the sum output S,. Instead, a Dbar e m r is observed. We first apply

the known input values to the partition producing the erroneous output The result is the Dbar theorems for S,

(from Table 5). On resolving the input values, A,=O and B,=O produce the following:

(SJ Dbarl
(SJ D h 2
(SJ Dbar3
(S3 D h 4

(FA.,:02' FA.,:A4' FA,:A5' FA,:A6' FA,:A7' C3=l)
(F4:02' FA,:A4' FA,:A5' FA,:A6' FA.,:A7' FA.,:I4' FA,:I5' B,=O C , d)
(FA.,:02' FA,:A4' FA,:A5' FA,:A6' FA.,:A7' FA,:Il' FA.,:I6' A.,=O C,4)
(F4:02' FA,:A4' FA,:A5' FA,:A6' F4:A7' FA.,:I2' FA,:I3' A,4 B,=O C,=l)

As can be seen, there are no fully activated theorems. In addition, there is only one partially activated theorem

(Dbarl). Here, the unresolved input postulate connected to another partition is C,=l. It is connected to the cany

output of full adder Fh . Now the Dbar theorems for the carry output of FA, are resolved with the known inputs.

The result is

(CJ Dbarl
(CJ Dbar2
(C,) Dbar3
(C,) Dbar4

(F4:Ol' F4 :Al ' F4:A2' FA,:A3')
(F4:Ol ' F 4 : A l ' F 4 A 2 ' F4:A3' C,=1)
(F4:Ol ' FA,,:AI' F&:A2' FA,,:A3' Cz=l)
(F4:Ol ' F4 :Al ' F4:A2' F&:A3' Cz=l)

In this case, there is a single fully activated theorem. It is Dbarl. This theorem is returned to the Dbarl

theorem from partition FA, and replaces the input postulate C,=l. The original partially activated theorem

becomes

(S,) Dbarl (F4:02' FA,:A4' FA,:A5' FA,:A6' FA,:A7' FA,:Ol' F+:AI' Fh:A2' FA,,:A3')

I
I
1
I
1
I
I
I
1
1
I
I
I
I
1
1
I
I
I

25

Figure 10: Block Diagram for an N-Bit Carry-Ripple Adder

Cout S

h

. . .
A B C C A B A B C B C A

Figure 11: Gate Level Circuit Diagram for Full Adder

S = D

C = l B = 1 A i l C = l B s 1 A = l

Figure 12: Fault Tree for D Error for S Output of Full Adder

Table 4: Theorems for D Error on S Output

I Theorem # I Theorem I
(02’ A4‘ A=O B=O C=O)
(02’ A S 11’ 12’ A=O B=l C=l)
(02’ A6’ 13’ 14’ A=l B 4 C=l)

D4 (02’ A7’ 15’ 16’ A=l B=l C=O)

26

1
1
I
I
I
I
I
1
I
I
I
I
1
I
I
I
I
I
1

27

h

c=o B = O A = O C = O B = O A = O

Figure 13: Fault Tree for Dbar Error for S Output of Full Adder

Table 5: Theorems for Dbar Error on S Output

Theorem # Theorem
A=l B=l C=1)
A=l B=O C=O)
A 4 B=l Cd)

(02’ A4’ A5’ A6’ A7’ 14’ 15’
(02’ A4’ A5’ A6’ A7’ 11’ 16’

C,=D

Figure 14: Fault Tree for D error on C, Output

Table 6: Theorems for D Error on C,, Output

Theorem # Theorem
(01’ Al’ A=O B=O)
(01’ A2’ A=O C=O)

28 1
I
I
I
I
I
1
I
I
I
1
I
1
1
1
I
I
1

Figure 1 5 Fault Tree for Dbar error on C, Output

Table 7: Theorems for Dbar Error on C, Output

Theorem # Theorem

(01’ Al’ A2’ A3’ A=l C-1)
Dbar3 (01’ Al’ A2’ A3’ B=l C=l)

29

30

Thus, for the observed e m value and known inputs, the complete suspect set is (FA,:02 F4:A4 FA,:A5

F4:A6 FA,:A7 FA,:O1 F 4 : A l FA,:A2 FA,:A3). Note that the suspect set has been reduced to eight of the sixty

components in the carry ripple adder.

Now assume that another error caused by the same fault is observed for the inputs A, = 0. B, = A, = B, =

A, = B, E A,, = Bo t 1. The error observed is a D on the carry output of FA,. We then apply the known input

values to the partition containing the erroneous output. These are the D theorems for C, (from Table 6). The fol-

lowing are the result of resolving the values A,=O and B,=l with the theorems:

(CJ D1 (FA,:Ol’ F 4 : A l ’ A,=O)
(CJ D2
(CJ D3 (F4:Ol’ FA,:A3’ C,=O)

(FA,:Ol’ FA,:A2’ A,=O C,=O)

As can be seen, there are no fully activated theorems. There is only one partially activated theorem (D3). Here,

the unresolved input postulate connected to another partition is C,=O. It is connected to the carry output of full

adder FA,. Now the D theorems for the carry output of FA, are resolved with the known inputs. The result is

(c,) DI (~ ~ , : o i , FA,:A~’)
(C,) D2 (F4:Ol’ F4A2’ C,=O)
(C,) D3 (F4:Ol’ Fp4:M’ C,=O)

The above set has a single fully activated theorem. It is D1. This theorem is returned u) the D1 theorem

from partition F 4 and replaces the input postulate C,=O. The original partially activated theorem becomes

(CJ D3 (FA,:Ol* FA,:A3’ FA,:Ol’ F4:Al’)

Thus, for this observed error value and known input values, the suspect set is (FA.,:Ol FA,:A3 FA,:01 FA,:Al).

Intersecting this suspect set with the suspect set from the first diagnosis generates the refined suspect set (FA,:01

F&:A1). The suspect now has been reduced to two (out of sixty) components: AND gate A1 in FA, or the OR

gate 01 in F&.

6.1 Discussion

If the entire N-bit adder were considered as a single partition, the number of theorems would grow exponen-

tially with the number of bits. This can be verified by generating a complete fault tree for the N-bit adder and

1
1
I
1
I
I
I
1
I
I
I
1
I
I
I
I
I
1
1

31

Error

D on Sum
D on Carrv

traversing the tree using the algorithm in Figure 6. By partitioning the circuit, the total number of theorems grows

linearly with the number of bits. This too can be verified by applying the algorithm in Figure 6 to each partition

and summing the total number of theorems generated. Table 3 illustrates the differences between the total number

of theorems generated with and without partitioning. In the worst case, the diagnosis will have to examine each

Number of Theorems
Without Partitioning With Partitioning

2 x 3N-1 + 2 x 4"' 7 N - 3
3" 3N

theorem. As can be easily seen, the worst case complexity is drastically reduced by partitioning.

Dbar on Sum 2 x 3"' + 2 x 4"' 7N-3

Table 3: Complexity of Diagnosis with and without Partitioning

, Dbar on Carry 4N 4N

The single step suspect table introduced in section 5 can also be used with a partitioneL c i r c ~ , Each parti-

tion has a single step suspect set table associated with it and by using partitioning the runtime complexity of the

diagnosis will now be linear in the number of partitions. Of course, if each component is set to be an individual

partition, the time complexity of the diagnosis will be linear in the number of components. Thus, by first parti-

tioning the circuit and then generating a single step suspect table for each partition, the runtime complexity of a

diagnosis has been drastically reduced. Instead of a runtime complexity linear in the number of components, it is

now linear in the number of partitions. By choosing the appropriate partitioning, a reasonable tradeoff between the

space complexity (Le., the size oE the single step suspect cable) and the time complexity required to perform a

diagnosis can be achieved. In comparison, the work presented in [23] (which in essence considers each com-

ponent to be a partition) has an exponential time complexityt.

' Although n d explicitly stated in 1231. if the algorirhm is modified to save some i n f m a u o n (thus increasing the time and space
complexity of the diagnosis). the WOrSt case Lime complcxiiy can be improved to be linw in the number of mmponenu.

32

7. DIAGNOSIS AT THE MODULE LEVEL

It is often the case that the diagnosis need not be performed down to the gate level. If the replaceable com-

ponents arc at the module level, it is inefficient to obtain a diagnosis at a level deeper than the module. Besides

providing more information than necessary, a gate level diagnosis would take more time than a module level diag-

nosis. The techniques developed to diagnose at the gate level can be modified to allow a diagnosis at a higher

level. In performing a diagnosis at the module level, a module is first described by its logical function in the form

of truth table or Karnaugh map. This function is then transformed into a product-of-sums representation (i.e.. a

theorem representation). A faulty component postulate for the module being considered is added to each sum

clause in this representation. This theorem representation can then be used as nodes in a fault tree at the module

level. As with the gate level diagnosis, the module level circuit can be partitioned to reduce the complexity of the

diagnosis. As an example, consider a module M described by the truth table in Table 8.

Table 8: Truth Table for Module M

I
I
1
1
I
1
I
I
I
I
I
I
I
I
I
1
I
1

34

groups of modules, the partitioning technique is recursively applied first to each partition and them to the modules

within the partitions.

1
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
I

35 .

8. CONCLUSIONS

In this thesis a methodology to perform the diagnosis digital systems was introduced. The methodology,

based on the generation of an AND/OR fault tree which is traversed to generate clause-form theorems, uses resolu-

tion techniques to determine the conditions necessary to activate faulty components. If additional errors occur due

to the same fault, the set of suspects is refined by intersecting the new suspect sets with the previous suspect set.

More importantly, a method of partitioning the circuit was introduced to reduce the complexity of the diagnosis.

By using a combination of partitioning and the single step suspect table, it has been shown that a runtime diag-

nosis has a time complexity linear in the number of partitions.

8.1 Future Research

Future work in the area of diagnostic reasoning for digital systems should include techniques to take into

consideration more complex fault models such as the stuck open model which introduces sequential behavior into

the circuit. In addition, it is not always reasonable to assume that there is only a single fault present in the system.

If the mean-time-to-repair is greater than the mean-time-to-failure for components in the system, it is entirely pos-

sible that two faults are present in the system simultaneously. This complicates the diagnostic process since faults

could possibly mask each other depending on the inputs to the system.

The greatest gains in the actual implementations will probably be found in hybrid diagnostic systems which

use a combination of rule-based techniques and reasoning approaches. The rule-based techniques could be 6rst

used to prune the set of suspect components. Once that has been accomplished, a reasoning approach could be

used to further refine the set of suspects.

36

W R E N C E S

[I] F.P. Preparata, G. Meae, and R.T. Chien, "On the Connection Assignment Problem of Diagnosable Sys-
tems," IEEE Transactions on Electronic Computers, pp. 843-854, Dec. 1967.

[2] A.T. Dahbura and G.M. Masson, "An O(na3 Fault Identification Algorithm for Diagnosable Systems," IEEE
Transactions on Computers, pp. 486-492, June 1984.

[3] B. Chandrasekaran and R. Milne, Eds.. "Special Section on Reasoning about Structure, Behavior and Func-
tion," SIGART Newsletter, pp. 4-55, July 1985.

[4] J. De Kleer, "How Circuits Work," Artificial Intelligence, pp. 205-280. Dec. 1984.

151 B. Kuipers, "Commonsense Reasoning about Causality: Deriving Behavior from Structure," Artificial Inrelli-
gence, pp. 169-203, Dec. 1984.

[61 R.T. Hanley, "CRIB: Computer Fault-Finding through Knowledge Engineering," IEEE Computer, pp. 76-
83, Mar. 1984.

[7] F. Pipitone, "An Expert System for Electronics Troubleshooting Based on Function and Connectivity,"
Proceedings of the Second Conference on Artificial Intelligence Applications, pp. 34-41, Dec. 1983.

[8] F. Pipitone, "The FIS Electronics Troubleshooting System," IEEE Computer, pp. 68-76, July 1986.

[9] M.P. Prevost and T.J. Laffey , "Know ledge-Based Diagnosis of Electronic Inshumentation," Proceedings of
the Second Conference on Artificial Intelligence Applications. pp. 42-48, Dec. 1983.

[101 M. Ragheb and D. Gvillo, "Development of Model-Based Fault-Identification Systems on Micmomputers."
SPIE Vol. 635: Applications of Artificial Intelligence III , 1986, pp. 268-275.

[ll] M. Ragheb, D. Gvillo, and H. Makowitz, "Symbolic Simulation of Engineering Systems on a Supercom-
puter," SPIE Vol. 635: Applications of Artificial Intelligence III, 1986, pp. 368-374.

[12] G.R. Gottschalk and R.M. Vandoorn, "A Rule-Based System to Diagnose Malfunctioning Computer Peri-
pherals," Hewlett-Packard Journal, pp, 48-53, Nov. 1986.

[13] H. Shubin and J.W. Wade, "IDT: An Intelligent Diagnostic Tool," Proceedings of AAAI Z982, pp. 290-295,
Aug. 1982.

[141 C. Strandberg, I. Abramovich, D. Mitchell, and K. Prill, "PAGE-1: A Troubleshooting Aid for Nonimpact
Page Printing Systems, Proceedings of the Second Conference on Artificial Intelligence Applications, pp.
68-74, Dec. 1983.

I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I

37

[15] A.J. Wilkinson, "MIND: An Inside Look at and Expert System for Electronic Diagnosis," IEEE Design and
Test, pp. 69-77, Aug. 1985.

[16] N. Yamada and H. Motoda, "A Diagnosis Method of Dynamic System Using the Knowledge on System
Description," Proceedings of IJCAf-8, pp. 225-229, Aug. 1983.

[17] R. Davis and H. Shobe., "Representing Structure and Behavior of Digital Hardware," IEEE Computer, pp.
75-82, Oct 1983.

[18] R. Davis, H. Shrobe, W. Hamshcher, K. Wieckert. M. Shirley, and S. Polit. "Diagnosis Based on Descrip-
tion of Structure and Function," Proceedings of AAAI 1982, pp. 137-142, Aug. 1982.

(191 R. Davis, "Diagnosis Via Causal Reasoning: Paths of Interaction and the Locality Principle," Proceedings of
AAAl1983, pp. 88-99, Aug. 1983.

[20] R. Davis, "Diagnostic Reasoning Based on Structure and Behavior," Artificial Intelligence, pp. 347410,
Dec. 1984.

[21] R. Davis, "Reasoning from First Principles in Electronic Troubleshooting." Internutwnul JOUM~ of Mun-
Machine Studies, pp. 403-423, Nov. 1983.

[22] M. Genesereth, "Diagnosis Using Hierarchical Design Models," Proceedings of AAAI 1982, pp. 278-283,
Aug. 1982.

[23] M. Genesereth, "The Use of Design Descriptions in Automated Diagnosis." Arr$cial Intelligence, pp. 411-
436. Dec. 1984.

[24] R.E. Barlow and H.E. Lambert, "Introduction to Fault Tree Analysis," in Reliability and Fault Tree
Analysis. Philadelphia: SIAM. 1975, pp. 7-35.

E251 J.A. Robinson, "A Machine-Oriented Logic Based on the Resolution Principle." Journal of the ACM. pp.
23-41, Jan. 1965.

[26] R.K. Iyer. DJ. Rossetti, and M.C. Hsueh, "Measurement and Modeling of Computer Reliability as Affected
by System Activity," ACM Transactions on Computer Systems, pp. 214-237, Aug. 1986.

[27] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness.
New York Freeman, 1979.

[28] R.S. Michalski, I. Mozetic, J. Hong, and N. Lavrac, "The AQl5 Learning System: An Overview and Experi-
ments," Report No. UIUCDCS-R-86-1260, University of Illinois at Urbana-Champaign, Department of
Computer Science, July 1986.

